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Motivation

I We want to identify distinct, “high-quality”, local minimizers of

minimize f (x)

l ≤ x ≤ u

x ∈ Rn

I High-quality can be measured by more than the objective.

I Derivatives of f may or may not be available.

I The simulation f is likely using parallel resources, but it does not
utilize the entire machine.
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Why concurrency? Tiled QR example
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[Bouwmeester, et al., Tiled QR Factorization Algorithms, 2011]
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Global optimization is difficult

Theorem (Törn and Žilinskas, Global Optimization, 1989)

An algorithm converges to the global minimum of any continuous f on
a domain D if and only if the algorithm generates iterates that are
dense in D.

I Either assume additional properties about the problem
I convex f
I separable f
I finite domain D

I concurrent evaluations of f

I Or possibly wait a long time (or forever)

The theory can be more than merely checking that a method generates
iterates which are dense in the domain.
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Multistart Methods
Given some local optimization routine L:
Algorithm 1: General Multistart

for k = 1, 2, . . . do
Evaluate f at N points drawn from D
Start L at some set (possibly empty) of previously evaluated points

I Get to use problem specific local optimization routines.
I Possibly multiple levels of parallelism (objective, local method, global

method); L may involve many sequential evaluations of f . . .

I Which points should start runs?
I If resources are limited, how should points from each run receive

priority?

I Ideally, only one run is started for each minima.
I Exploring by sampling. Refining with L.
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Multi-Level Single Linkage
Given some local optimization routine L:
Algorithm 2: MLSL

for k = 1, 2, . . . do
Sample f at N random points drawn uniformly from D
Start L at any sample point x :

I that has yet to start a run
I @xi : ‖x − xi‖ ≤ rk and f (xi ) < f (x)

[Rinnooy Kan and Timmer, Mathematical Programming, 39(1):57–78, 1987]

I Doesn’t naturally translate when evaluations of f are limited

I Ignores some points when deciding where to start L
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Multi-Level Single Linkage

k = 1; rk = 0.71575;
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Multi-Level Single Linkage
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Multi-Level Single Linkage
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Multi-Level Single Linkage
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Multi-Level Single Linkage
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Multi-Level Single Linkage
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Multi-Level Single Linkage
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Multi-Level Single Linkage

k = 20; rk = 0.27073;
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Multi-Level Single Linkage

k = 22; rk = 0.26079;
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Multi-Level Single Linkage

I f ∈ C 2, with local minima in the interior of D, and the distance
between these minima is bounded away from zero.

I L is strictly descent and converges to a minimum (not a stationary
point).

I

rk =
1√
π

n

√
Γ
(
1 +

n
2

)
vol (D)

σ log kN
kN

(1)

Theorem
If rk → 0, all local minima will be found almost surely.

If rk is defined by (1) with σ > 4, even if the sampling continues
forever, the total number of local searches started is finite almost surely.
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BAMLM
MLSL: (S2)–(S4)

BAMLM: (S1)–(S4), (L1)–(L6)

x̂ ∈ Sk

(S1) @x ∈ Lk with
[‖x̂ − x‖ ≤ rk and f (x) < f (x̂)]

(S2) @x ∈ Sk with
[‖x̂ − x‖ ≤ rk and f (x) < f (x̂)]

(S3) x̂ has not started a local
optimization run

(S4) x̂ is at least µ from ∂D and ν
from known local minima

x̂ ∈ Lk

(L1) @x ∈ Lk

[‖x̂ − x‖ ≤ rk and f (x) < f (x̂)]

(L2) @x ∈ Sk with
[‖x̂ − x‖ ≤ rk and f (x) < f (x̂)]

(L3) x̂ has not started a local
optimization run

(L4) x̂ is at least µ from ∂D and ν
from known local minima

(L5) x̂ is not in an active local
optimization run and has not
been ruled stationary

(L6) ∃rk -descent path in Hk from
some x ∈ Sk satisfying (S2-S4)
to x̂
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BAMLM

Iteration: 0; r_k: Inf
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BAMLM

Iteration: 1; r_k: 0.743

10 of 25.



BAMLM

Iteration: 2; r_k: 0.743

10 of 25.



BAMLM

Iteration: 3; r_k: 0.689

10 of 25.



BAMLM

Iteration: 4; r_k: 0.643

10 of 25.



BAMLM

Iteration: 5; r_k: 0.605

10 of 25.



BAMLM

Iteration: 6; r_k: 0.605
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BAMLM

Iteration: 7; r_k: 0.605

10 of 25.



BAMLM

Iteration: 8; r_k: 0.605
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BAMLM

Iteration: 9; r_k: 0.605

10 of 25.



BAMLM

Iteration: 10; r_k: 0.605

10 of 25.



BAMLM

Iteration: 35; r_k: 0.605
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BAMLM

Iteration: 36; r_k: 0.605
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BAMLM

Iteration: 37; r_k: 0.589
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BAMLM

Iteration: 38; r_k: 0.574
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BAMLM

Iteration: 39; r_k: 0.560

10 of 25.



BAMLM

Iteration: 40; r_k: 0.548

10 of 25.



BAMLM

Iteration: 41; r_k: 0.536

10 of 25.



BAMLM

Iteration: 42; r_k: 0.525

10 of 25.



BAMLM

Iteration: 43; r_k: 0.515

10 of 25.



BAMLM

Iteration: 44; r_k: 0.497

10 of 25.



BAMLM

Iteration: 45; r_k: 0.480
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BAMLM

Iteration: 80; r_k: 0.281

10 of 25.



BAMLM

Iteration: 81; r_k: 0.279

10 of 25.



BAMLM

Iteration: 82; r_k: 0.276

10 of 25.



BAMLM

Iteration: 83; r_k: 0.274

10 of 25.



BAMLM

Iteration: 84; r_k: 0.272

10 of 25.



BAMLM

Iteration: 85; r_k: 0.270

10 of 25.



BAMLM

Iteration: 86; r_k: 0.268
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BAMLM

Iteration: 87; r_k: 0.266
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BAMLM

Iteration: 88; r_k: 0.264

10 of 25.



BAMLM

Iteration: 89; r_k: 0.263

10 of 25.



BAMLM

Iteration: 90; r_k: 0.262
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BAMLM

Iteration: 91; r_k: 0.261
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BAMLM

Iteration: 92; r_k: 0.260

10 of 25.



BAMLM

Iteration: 93; r_k: 0.259
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BAMLM

Iteration: 94; r_k: 0.258

10 of 25.



BAMLM

Iteration: 95; r_k: 0.257
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BAMLM

Iteration: 96; r_k: 0.256

10 of 25.



BAMLM

Iteration: 97; r_k: 0.255

10 of 25.



BAMLM

Iteration: 98; r_k: 0.255

10 of 25.



BAMLM

Iteration: 99; r_k: 0.254

10 of 25.



Properties of the local optimization method

Necessary:
I Honors a starting point
I Honors bound constraints

ORBIT satisfies these [Wild, Regis, Shoemaker, SIAM-JOSC, 2008]

BOBYQA satisfies these [Powell, 2009]

Possibly beneficial:
I Can return multiple points of interest
I Reports solution quality/confidence at every iteration
I Can avoid certain regions in the domain
I Uses a history of past evaluations of f
I Uses additional points mid-run
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AAMLM
Algorithm 3: AAMLM
Give each worker a point to evaluate
for k = 1, 2, . . . do

Receive from (longest waiting) worker w that has evaluated f
Update Hk and rk
if point evaluated by w is from an active run then

if Run is complete then
Update X ∗k , and mark points inactive

else
Add the next point in its localopt run (not in Hk) to QL

Start run(s) at all point(s) satisfying (S1)–(S4), (L1)–(L6)
Add the subsequent point (not in Hk) from each run to QL

Merge runs in QL with candidate minima within 2ν of each other
Give w a point at which to evaluate f , either from QL or R

12 of 25.



BAMLM
MLSL: (S2)–(S4) BAMLM: (S1)–(S4), (L1)–(L6)

x̂ ∈ Sk

(S1) @x ∈ Lk with
[‖x̂ − x‖ ≤ rk and f (x) < f (x̂)]

(S2) @x ∈ Sk with
[‖x̂ − x‖ ≤ rk and f (x) < f (x̂)]

(S3) x̂ has not started a local
optimization run

(S4) x̂ is at least µ from ∂D and ν
from known local minima

x̂ ∈ Lk
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[‖x̂ − x‖ ≤ rk and f (x) < f (x̂)]

(L2) @x ∈ Sk with
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(L3) x̂ has not started a local
optimization run

(L4) x̂ is at least µ from ∂D and ν
from known local minima

(L5) x̂ is not in an active local
optimization run and has not
been ruled stationary

(L6) ∃rk -descent path in Hk from
some x ∈ Sk satisfying (S2-S4)
to x̂

13 of 25.



AAMLM Theory

Theorem
Given the same assumptions as MLSL, AAMLM will start a finite
number of local optimization runs with probability 1.

Assumption

There exists K0 <∞ so that for any K0 consecutive iterations, there is
a positive (bounded away from zero) probability of evaluating a point
from the sample stream and each existing local optimization run.

Theorem
Each x∗ ∈ X ∗ will almost surely be either identified in a finite number of
evaluations or have a single local optimization run that is converging
asymptotically to it.

14 of 25.
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Measuring Performance

GLODS Global & local optimization using direct search [Custódio, Madeira

(JOGO, 2014)]

Direct Serial DIRECT [D. Finkel’s MATLAB code]

pVTDirect Parallel DIRECT [He, Watson, Sosonkina (TOMS, 2009)]

Random Uniform sampling over domain (as a baseline)

BAMLM
I Concurrency: 4
I Local optimization method

I ORBIT [Wild, Regis, & Shoemaker (SIAM JOSC, 2008)]
I BOBYQA [Powell, 2009]

I Initial sample size: 10n

I Each method evaluates Direct’s 2n + 1 initial points.

15 of 25.



Measuring Performance

Notation:

Let X ∗ be the set of all local minima of f .
Let f ∗(i) be the ith smallest value {f (x∗)|x∗ ∈ X ∗}.
Let x∗(i) be the element of X ∗ corresponding to the value f ∗(i).

The global minimum has been found at a level τ > 0 at batch k if an
algorithm it has found a point x̂ satisfying:

f (x̂)− f ∗(1) ≤ (1− τ)
(
f (x0)− f ∗(1)

)
,

where x0 is the starting point for problem p.

16 of 25.
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The j best local minima have been found at a level τ > 0 at batch k if:∣∣∣{x∗(1), . . . , x
∗
(j−1)

}⋂{
x∗(i) : ∃x ∈ Hk with

∥∥∥x − x∗(i)

∥∥∥ ≤ rn(τ)
}∣∣∣ = j − 1

&∣∣∣{x∗(j), . . . , x
∗
(̄j)

}⋂{
x∗(i) : ∃x ∈ Hk with

∥∥∥x − x∗(i)

∥∥∥ ≤ rn(τ)
}∣∣∣ ≥ j − j + 1,

where j and j̄ are the smallest and largest integers such that

f ∗
(̄j) = f ∗(j) = f ∗(j) and where rn(τ) =

n
√

τ vol(D)Γ( n
2 +1)

πn/2 .
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Problems considered
GKLS problem generator [Gaviano et al., “Algorithm 829” (TOMS, 2003)]

I 600 synthetic problems with known local minima

I n = 2, . . . , 7

I 10 local minima in the unit cube with a unique global minimum

I 100 problems for each dimension

I 5 replications (different seeds) for each problem

I 5000 evaluations

17 of 25.



Data Profiles
f (x)− f ∗(1) ≤ (1− 10−5)

(
f (x0)− f ∗(1)

)
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BAMLM 4 workers
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Direct (idealized)
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Data Profiles
Within n

√
10−3Γ( n

2 +1)

πn/2 of 7 best minima

1 2 4 8 16 32 64 128 256 512 1024
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

 

 

BAMLM 4 workers
Random Sampling
pVTdirect 4 workers
Direct (serial)
GLODS (serial)
Direct (idealized)

18 of 25.



Data Profiles
Within n

√
10−3Γ( n

2 +1)

πn/2 of 7 best minima

1 2 4 8 16 32 64 128 256 512
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

 

 

2 workers, BOBYQA
4 workers, BOBYQA
8 workers, BOBYQA
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Data Profiles
f (x)− f ∗(1) ≤ (1− 10−5)

(
f (x0)− f ∗(1)

)
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Uniform sampling
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Latin hypercube sampling
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Latin hypercube sampling
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BAMLM with LHS
Critical distance for uniform sampling:

rk = π−1/2
(

Γ(1 +
n
2

) vol (D)
σ log kN

kN

)1/n

Critical distance for Latin hypercube sampling:

rk = π−1/2
(

Γ(1 +
n
2

) vol (D)
σNn−1 log k

k

)1/n

(2)

Theorem
If rk is defined by (2) with σ > 4, even if the sampling continues
forever, the total number of local runs started by BAMLM (or AAMLM)
is finite almost surely.
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Does LHS help?
Problem setup:
I 10 different GKLS problems
I 5 different seeds
I n = 2, . . . , 7

I Same starting LHS sample of 10n points (except for uniform)
I Same (uniform) rk value
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Data Profiles
f (x)− f ∗(1) ≤ (1− 10−2)

(
f (x0)− f ∗(1)

)
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Data Profiles
f (x)− f ∗(1) ≤ (1− 10−3)

(
f (x0)− f ∗(1)

)
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Data Profiles
f (x)− f ∗(1) ≤ (1− 10−4)

(
f (x0)− f ∗(1)

)
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Closing Remarks

I Concurrent function evaluations can locate multiple minima while
efficiently finding the global minimum.

I Latin hypercube sampling appears to help find more minima in
higher-dimensional problems.

Questions:
I Finding (or designing) the best local solver for our framework?
I Best way to process the queue?
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AAMLM

Algorithm 3: AAMLM
Give each worker a point to evaluate
for k = 1, 2, . . . do

Receive from (longest waiting) worker w that has evaluated f
Update Hk and rk
if point evaluated by w is from an active run then

if Run is complete then
Update X ∗k , and mark points inactive

else
Add the next point in its localopt run (not in Hk) to QL

Start run(s) at all point(s) satisfying (S1)–(S4), (L1)–(L6)
Add the subsequent point (not in Hk) from each run to QL

Merge runs in QL with candidate minima within 2ν of each other
Give w a point at which to evaluate f , either from QL or R
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